About us
Select category
  • Select category
  • Dyeing Lab Machine
  • Lab Equipment & Instrument
  • Physical Testing & Fabric Testing
  • Yarn Dyeing Machine & Equipment
0 items $0.00
Menu
About us
0 items $0.00
  • Home
  • Products
    • Dyeing Lab Machine
      • Products
        • IR Dyeing Machine Dunlin IR Dyeing Machine Dunlin
        • Digital Ph meter
        • Color fastness to washing machine
        • Rainin Digital Pipette
        • HTHP Glycerin bath dyeing machine
        • Laboratory mini stenter Dryer
        • Laboratory tenter
        • Laboretory hydro Extractor
        • Laboretory Padder
        • Oscillation type Dyeing Machine
        • Orbital Shaker Machine
        • Steam Soaping machine

      IR Dyeing Machine Dunlin

      View More
    • Physical Testing & Fabric Testing Machine
      • Products
        • Tensile Strength tester
        • Martindale abrasion tester
        • Martindale abrasion tester updated Martindale abrasion tester Updated
        • Digital Elmendorf tearing tester
        • Bursting strength tester
        • ICI pilling & Snagging test machine
        • Fabric Stiffness Tester
        • Color Fastness to washing machine
        • Fabric air permeability tester
        • Fabric drape tester
        • Fabric flame retardant tester
        • fabric moisture permeability tester
      • Products
        • Stretch Recovery Tester Static Method
        • Xenon Arc Light Fastness Tester
        • Fastness rotary friction tester
        • Fiber oil fast extractor
        • Fabric flame retardant tester
        • Random Tumble Pilling Tester
        • Spray Rating Tester
        • Fatigue tester for Elastic fabric
    • Lab Equipment & Instrument
      • Products
        • Counting Balance /Weighing Scale
        • controller for Ir Dyeing Machine
        • Analog Thickness gauge
        • color matching cabinet/Light box
        • VeriVide Colour Assessment Cabinets
        • Digital hotplate magnetic stirrer
        • Digital Temperature Humidity meter
        • Digital Ink Rubbing Tester
        • Digital paper dot meter Densitometer
        • Digital Bench top PH Meter
        • Digital precision balance
        • Digital thickness gauge
      • Products
        • Pantone book
        • Hydraulic GSM Cutter
        • Gray scale
        • GSM Cutter & Balance
        • Hand needle detector
      • Products
        • Perspiration Tester
        • Textile moisture meter tem aqua boy
        • VeriVide D65 Tube Light
        • Yarn Tension Meter
    • Wet & Dry Process Instrument
      • Products
        • Bosch tumble dryer
        • Bosch-Washing-Machine-WAJ2018SGC-4
        • Capillary effect tester
        • Color fastness to wash
        • Color fastness to sublimation & heating
        • Durawash print Durability tester
        • Formaldehyde tester for textiles
        • Ozone Exposure chamber
        • Pilling assessment viewer
        • Whirlpool washer & Dryer
      Textile Machinery Supplier in Bangladesh

      MAAM TEX

      Lab Machine Supplier in Bangladesh, Testing machine supplier in Bangladesh, Dyeing Machine supplier in Bangladesh, Lab Machine Supplier in Dhaka, yarn Dyeing machine supplier in Bangladesh, Lab Dispensing Machine supplier in Bangladesh, soft winding machine supplier in Bangladesh, Hard winding machine supplier in Bangladesh, IR Dyeing machine supplier in Bangladesh, Lab machine Price in Bangladesh, 

    • Yarn Dyeing Machine-Equipment
      • Products
        • Cone yarn Dyeing machine
        • Automatic Bobbin Hydroextractor
        • Card winding machine for yarn
        • Sample Cone Yarn Dyeing machine
        • Digital yarn twist Tester
        • Electronic wrap reel
        • Fully Automatic Radio Frequency Dryer
        • Thread Cone Winding Machine
        • High speed hard winding machine
        • High speed Soft cone winding machine
        • Yarn evenness tester
      • Products
        • Yarn evenness tester
    • Washing-Drying Machine
      • Products
        • Automatic washing project
  • About us
  • Contact us
Fiber Oil Fast Extractor
Fiber Oil Fast Extractor
360 product view
    0%
    Click to enlarge
    Fiber Oil Fast Extractor
    Fiber Oil Fast Extractor
    Home Physical Testing & Fabric Testing Fiber Oil Fast Extractor
    Fastness Rotary Friction Tester
    Fastness Rotary Friction Tester $0.00
    Back to products
    Analog Thickness Gauge
    Analog Thickness Gauge $0.00

    Fiber Oil Fast Extractor

    $0.00

    Fiber Oil Fast Extractor

    Fiber Oil Fast Extractor

    Fiber Oil Fast Extractor

     

    A Fiber Oil Fast Extractor is a laboratory instrument designed to determine the oil or finish content in fibers, yarns, or fabrics, particularly wool and synthetic materials. It operates on the principle of solvent extraction followed by evaporation.

     

    Working Principle of Fiber Oil Fast Extractor:

    1. Sample Preparation: Cut the fabric or fiber into small pieces.
    2. Solvent Addition: Place the sample into a metal tube and add an appropriate solvent (e.g., petroleum ether, ethyl ether).

     

    1. Extraction: Apply weight to the sample to facilitate the dissolution of oils into the solvent.
    2. Evaporation: The solvent-oil mixture drips onto a heated plate where the solvent evaporates, leaving behind the oil.
    3. Measurement: Weigh the remaining oil and calculate its percentage relative to the initial sample mass.

     

    Key Features of Fiber Oil Fast Extractor:

    – Multiple Workstations: Models like the Quick Extra offer four independent stations for simultaneous testing.- Automatic Weight Pressurization: Eliminates manual pressure application, ensuring consistent results.- Microcomputer Temperature Control: Maintains uniform heating (typically 90°C–120°C) with ±1°C precision.

     

    – Digital Interface: Features timers and oil calculators for efficient operation.

    – Data Connectivity: Some models can connect to systems like Smart Tex Lab for real-time monitoring and data management.

     

    Applications of Fiber Oil Fast Extractor:

    – Textile Industry: Assessing oil content in fibers to ensure quality and compliance with standards like GB/T 6504-2017. – Research and Development: Studying the effects of oils and finishes on fiber properties. – Quality Control: Ensuring consistency in fiber treatment processes.

     

    Benefits of Fiber Oil Fast Extractor:

    1. Accurate Oil Content Measurement- Precisely determines oil or finish content in fibers, crucial for quality control.
    2. Rapid Extraction Process – Delivers fast results, improving lab efficiency and productivity.
    3. Simultaneous Multi-Sample Testing – Multiple workstations (e.g., 4 at once) reduce testing time for bulk samples.

     

    1. Improved Product Quality – Helps maintain consistent oil levels, which affect dyeing, processing, and fabric performance.
    2. Automatic Operation – Automated pressing and heating reduce manual effort and operator error.
    3. Digital Monitoring – Built-in timer, temperature control, and oil calculator enhance accuracy and usability.

     

    1. Compliance with Standards – Supports industry methods like GB/T 6504-2017, ensuring reliable and standard-compliant results.
    2. Safe Solvent Handling – Enclosed design minimizes solvent exposure and evaporation loss.

     

    Features of Fiber Oil Fast Extractor:

    1. Multiple Test Stations – Usually equipped with 2 to 4 independent work units for parallel testing.
    2. Automatic Weight Pressing System – Applies consistent pressure on samples for uniform solvent extraction.
    3. Microcomputer Temperature Control – Maintains precise heating (typically 90–120°C) with ±1°C accuracy.

     

    1. Built-in Timer and Calculator – Allows setting extraction time and calculates oil content directly.
    2. Solvent Evaporation Plate- Heats and evaporates solvent quickly, leaving only the oil residue.
    3. Digital Display – Shows time, temperature, and process status for user-friendly operation.
    4. Compact and Durable Design – Made with corrosion-resistant materials suited for chemical handling.

     

    1. Safety Features – Includes overheat protection and enclosed solvent chamber to reduce exposure risk.
    2. Standard Compliant – Designed to meet GB/T 6504-2017 and similar industry testing standards.

     

    How to Use Fiber Oil Fast Extractor:

    1. Prepare the Sample – Cut 5–10 g of fiber or yarn into small pieces and place in the sample tube.
    2. Add Solvent – Pour a suitable solvent (e.g., petroleum ether) into the tube to cover the sample.
    3. Apply Weight – Place the extractor’s weight or press system onto the sample to aid extraction.

     

    1. Start Extraction – Activate the machine. The solvent dissolves the oils and flows to the heating plate.
    2. Heat for Evaporation – Set the temperature (typically 90–120°C). The solvent evaporates, leaving oil on the plate.
    3. Measure Oil Content- After drying, weigh the remaining oil. Use the built-in calculator or formula:

    Oil % = (Oil weight / Original sample weight) × 100

    1. Clean the Unit – After cooling, clean all parts to prepare for the next test.

      Fiber Oil Fast Extractor

      Fiber Oil Fast Extractor

     

    Category: Physical Testing & Fabric Testing Tags: Fiber Oil Fast Extractor, Fiber Oil Fast Extractor price in Bangladesh, Lab Fiber Oil Fast Extractor, Oil Fast Extractor Brand: DARONG
    Share:
    • Description
    • Shipping & Delivery
    Description

      Shipping & Delivery

      Related products

      Fabric Moisture Permeability Tester
      Fabric Moisture Permeability Tester

      fabric moisture permeability tester

      Physical Testing & Fabric Testing
      $0.00
      Fabric Moisture Permeability Tester
      Fabric Moisture Permeability Tester

      Fabric Moisture Permeability Tester

        A Fabric Moisture Permeability Tester, also known as a Water Vapor Permeability Tester, is a laboratory instrument designed to measure the rate at which water vapor passes through textile materials. This measurement is crucial for assessing the breathability and comfort of fabrics, especially those used in active wear, outdoor gear, medical textiles, and protective clothing.   Purpose of Fabric Moisture Permeability Tester The primary function of this tester is to evaluate a fabric's ability to allow moisture vapor to pass through it, which directly impacts the wearer's comfort by facilitating sweat evaporation and thermal regulation. High moisture permeability indicates better breathability, making the fabric suitable for applications where moisture management is essential.   Working Principle of Fabric Moisture Permeability Tester The tester operates by placing a fabric specimen over a container filled with water. Under controlled temperature and humidity conditions, water vapor passes through the fabric over a specified period. The amount of water vapor transmitted is determined by measuring the weight loss of the container, allowing for the calculation of the Water Vapor Transmission Rate (WVTR).   Common Testing Methods
      1. Upright Cup Method: The fabric covers a cup containing water, and the assembly is placed upright in a controlled environment. After a set duration, the weight loss is measured to determine the WVTR.
      2. Inverted Cup Method: The fabric is sealed over a cup, which is then inverted and exposed to a controlled environment. The amount of water vapor absorbed by the fabric is measured over time.
       
      1. Sweating Hot Plate Test: Simulates human perspiration by measuring the energy required to maintain a constant temperature on a heated plate covered with the fabric, providing insights into the fabric's breathability.
        Key Specifications of Fabric Moisture Permeability Tester - Test Cups: Typically 6 to 8 cups, each with a diameter of approximately 83 mm and a depth of 18.5 mm.- Turntable Speed: Approximately 2 revolutions per minute (RPM) to ensure uniform exposure. - Environmental Conditions: Tests are conducted under controlled temperature (e.g., 23 ± 2°C) and humidity (e.g., 50 ± 5% RH) settings. - Standards Compliance: Conforms to international standards such as ASTM E96, ISO 15496, BS 7209, and JIS L1099.     ✅ Benefits of Fabric Moisture Permeability Tester - Enhanced Product Development: Provides critical data for designing breathable and comfortable textiles- Quality Assurance: Ensures consistency in fabric performance across different production batches- Regulatory Compliance: Helps manufacturers meet industry standards and certifications.   - Consumer Satisfaction: Contributes to the development of garments that offer better moisture management, leading to increased wearer comfort.   Applications of Fabric Moisture Permeability Tester - Active wear and Sportswear: Assessing fabrics for athletic performance and comfort. - Outdoor and Protective Clothing: Ensuring materials provide adequate breathability while offering protection. Medical Textiles: Evaluating materials used in healthcare settings for moisture management. - Technical and Industrial Textiles: Testing specialized fabrics used in various industrial applications.   Features of fabric moisture permeability tester
      1. Multi-Cup Design - Typically includes 6 or more test cups for simultaneous testing of multiple samples.
      2. Rotating Turntable - Ensures uniform air exposure and consistent vapor transmission across all samples.
      3. Precision Weighing System- Accurate measurement of weight loss to calculate water vapor transmission rate (WVTR).
       
      1. Temperature & Humidity Control - Maintains stable environmental conditions (e.g., 23°C, 50% RH) for reliable results.
      2. Digital Display or Software Interface - Displays real-time data and test status; advanced models offer data logging and export.
      3. Compliance with Standards - Supports ASTM E96, ISO 15496, BS 7209, JIS L1099 testing methods.
       
      1. Sealed Test Chambers- Prevents external air interference, improving accuracy.
      2. Corrosion-Resistant Construction - Durable materials suitable for long-term use in lab environments.
      3. Easy Sample Mounting - Quick and secure fabric placement on test cups with sealing rings.
      4. Low Maintenance Design- Simplified components for easy cleaning and upkeep.
        How to Use Fabric Moisture Permeability Tester (Cup Method):  
      1. Prepare the Test Solution - Fill each test cup with a set amount of water (e.g., 50 ml), or a desiccant if using inverted method.
      2. Mount the Fabric - Cut the fabric into circular pieces matching the cup size.
      - Securely seal each fabric over the cup opening with a gasket and ring to prevent leakage.
      1. Weigh the Cups - Record the initial weight of each cup with the fabric mounted.
       
      1. Place on Turntable - Position all cups on the rotating tray inside the controlled chamber.
      2. Set Conditions - Close the chamber and maintain temperature (e.g., 23°C) and relative humidity (e.g., 50%) as per test standard.
      3. Start the Test - Begin rotation (usually ~2 RPM) and let it run for the specified time (often 24 hours).
      4. Weigh the Cups Again- After the test duration, reweigh the cups to determine weight loss due to moisture vapor passing through the fabric.
       
      1. Calculate WVTR - Use the formula: WVTR = (Weight Loss in grams × 24) / (Test Area in m² × Time in hours) Expressed in g/m²/24h.
      2. Clean and Store - Clean cups and components for future use.
          fabric moisture permeability tester Scope of application It is used to determine the moisture permeability of various fabrics (including moisture permeable coated fabrics) and nonwovens such as batting cotton and space cotton. [Related standards] GB/T12704 ASTM E90 JIS L1099A BS 7209 JIS L1099B (custom) etc.   Instrument characteristics 1. Integrated structure of baking oven and constant temperature and humidity box. 2. Microcomputer control, color touch screen Chinese menu operation. 3. Circulating air velocity 0.2-3m/s digital setting. 4. Imported high-precision temperature and humidity sensor, imported motor drive, ceramic heating tube heating.   Technical parameters 1.Work mode: Microcomputer control, color touch screen Chinese menu operation, test environment monitoring. 2. Sample box control temperature:15 ~ 40 C, accuracy 0.1 + C, resolution 0.01 C 3. Heat dissipation mode:Air cooling 4. Sample box control humidity:30 ~ 95%, precision + 2%, resolution 0.01% 5. Test chamber humidification:≥300ml/h 6. Accompany oven control temperature: Room temperature to 200 c 7. Test time:1min~999h59min 8. The rate of circulating steam flow:0. 2-3m/s digital setting resolution 0.01m/s 9. Moisture permeability area:2827㎜2(∮60㎜GB) Optional 3848, 2 (70 70 ASTM) 10. The number of moisture permeable cups.6 (GB) can be replaced by 6 (US standard). 11. Internal dimensions of drying oven:490×400×215mm 12. Power supply:Ac220V 50Hz 6kw 13. Size:930×820×1700mm 14. Weight:350kg
      Add to cart
      Quick view
      Digital Elmendorf Tearing Tester

      Digital Elmendorf tearing tester

      Dyeing Lab Machine, Physical Testing & Fabric Testing
      $0.00
      Digital Elmendorf Tearing Tester
      Digital Elmendorf Tearing Tester

      Digital Elmendorf Tearing Tester

        Digital Elmendorf Tearing Tester is a precision instrument used to measure the tear strength of materials like woven fabrics, paper, plastic films, and nonwovens. It determines how much force is required to continue tearing a pre-slit sample. Key Functions of Digital Elmendorf Tearing Tester: - Measures propagation tear resistance, not initial tear. - Uses a pendulum to apply force; the energy lost during tearing is calculated to determine tear strength. - Equipped with a digital display for direct reading of results in grams or millinewtons. Core Components: - Pendulum Arm: Applies tearing force. - Clamps: Secure the sample before and after the tear. - Cutting Blade: Creates a precise slit at the start of the test. - Digital Display Unit: Shows the tearing force result clearly and instantly. - Counterweights: Optional weights for increasing test range (for stronger materials).   Applications of Digital Elmendorf Tearing Tester: - Testing tear resistance of: - Textile fabrics (especially woven) - Paper and cardboard - Plastic films - Nonwovens - Packaging materials Benefits of Digital Elmendorf Tearing Tester:
      1. Accurate Tear Strength Measurement - Provides precise data on tear resistance, critical for quality control and product performance.
      2. Digital Readout - Easy-to-read display gives instant, reliable results without manual calculations.
      3. High Reproducibility - Ensures consistent test outcomes due to controlled tearing angle and speed.
       
      1. Fast Testing Process - Simple loading and quick test cycle increase lab efficiency.
      2. Suitable for Various Materials - Tests a wide range of flexible materials like textiles, paper, plastic, and packaging.
      3. Customizable Range - Use of optional weights extends the test range for low to high tear strength materials.
      4. Low Sample Waste - Requires small fabric or material samples, reducing waste during testing.
      5. Standards Compliance - Meets international testing standards (e.g., ASTM D1424, ISO 13937) for credibility and uniformity.
      Features of Digital Elmendorf Tearing Tester: Digital Display - Provides accurate and direct reading of tear strength in grams, mN, or cN. Pendulum Mechanism - Uses a swinging pendulum to simulate tear propagation with consistent force. Adjustable Test Range - Includes interchangeable pendulum weights to test various material strengths.
      1. Precision Sample Clamp - Securely holds samples in place to ensure accurate tear initiation.
      2. Pre-Cutting Blade - Integrated knife creates a precise initial slit in the sample before tearing.
      3. User-Friendly Interface - Simple buttons and screen navigation for ease of operation.
      4. Standard Test Compliance - Compatible with ASTM D1424, ISO 1974, ISO 13937, and other tear strength standards.
      1. Sturdy Construction - Made with durable materials for long-lasting performance and stable operation.
      2. Compact Design - Space-efficient footprint ideal for laboratory environments.
      3. Data Output Options- Some models offer USB or printer connectivity for result documentation.
      How to Use a Digital Elmendorf Tearing Tester:
      1. Prepare the Sample - Cut the material (fabric, paper, film, etc.) to standard size (typically 100 × 63 mm for textiles) and slit it with the pre-cutter as required.
      2. Select Pendulum Weight - Choose the appropriate pendulum or add counterweights based on expected tear strength.
      1. Calibrate the Machine - Set the pendulum to its starting position and zero the display.
      2. Clamp the Sample - Fix one half of the sample in the stationary clamp and the other in the moving clamp.
      3. Cut the Initial Slit - Use the integrated blade to make a precise cut at the marked slit area (usually 20 mm).
      1. Release the Pendulum - Trigger the pendulum to swing and tear the sample through the pre-slit.
      2. Read the Result - The digital display will show the tearing force automatically (in g, mN, or cN).
      3. Record or Export Data - Save or print the result if your model supports USB or printer connection.
      4. Reset for Next Test - Reposition the pendulum and prepare a new sample for the next cycle.
      Safety Tip: - Always ensure your hands are clear before releasing the pendulum.   Digital Elmendorf tearing tester Scope of application It is used for the determination of the tear resistance of various woven fabrics (Elmendorf method), and it can also be used for the determination of the tear resistance of thick paper, plastic sheeting, electrical tape, etc. Related standards GB/T 3917.1 FZ/T60006 FZ/T75001 ISO1974/9290 ASTM D1424/5734 etc. Instrument characteristics 1. Maximum 300N test range 2. Microcomputer control, digital decoding, support online communication 3. Color touch screen control, Chinese and English menu operation interface 4. Pneumatic clamping, automatic cutting 5. A variety of measurement units (cN, gf) selection 6. Fully automatic operation with safe operation protection. 7. Automatically increase potential energy [Technical parameter]: 1. Test range: first gear: (0~16)N second gear: (0~32)N third gear: (0~ 64)N fourth gear: (0~128)N fifth gear: (0~300)N 2. Test accuracy: ≤±0.2%F·S 3. Tearing length: 43mm (non-standard 30-60mm can be set) 4. Automatic incision length: (20±0.2)mm 5. Sample size: (100×63)mm 6. Specimen clamping: pneumatic way 7. Sample test: Up to 10 sets per group on the device side, and 30 sets of data can be selected to be saved 8. Power supply: AC220V±10% 50Hz 100W 9. Dimensions: (650×660×680)mm 10. Weight: 50kg [Sample of control interface]:(English version is also available.)
      Add to cart
      Quick view

      ICI Pilling & Snagging Test Machine

      Physical Testing & Fabric Testing
      $0.00
      ICI Pilling & Snagging Test Machine An ICI Pilling & Snagging Test Machine is a specialized laboratory instrument designed to
      Add to cart
      Quick view
      New
      Fabric air permeability tester

      Fabric air permeability tester

      Dyeing Lab Machine, Physical Testing & Fabric Testing
      $0.00
      Fabric Air Permeability Tester
      Fabric air permeability tester

      Fabric air permeability tester

        Fabric Air Permeability Tester is a lab instrument used to measure how easily air passes through a fabric. It quantifies the air permeability, which is crucial for evaluating breathability, comfort, and functional performance in textiles. Purpose Fabric Air Permeability Tester: It determines the rate of airflow through a fabric sample under a set air pressure, typically reported in units like cm³/cm²/s or L/m²/s. Working Principle: The tester creates a pressure difference across the fabric sample and measures the volume of air flowing through it. Higher air permeability means the fabric is more breathable. Main Components of Fabric Air Permeability Tester: - Test Head / Clamp: Holds the fabric securely without leakage. - Pressure Regulator: Maintains a constant air pressure during testing. - Flow Meter or Digital Sensor: Measures the actual airflow rate through the fabric. - Display Unit: Shows readings of air permeability instantly.   Applications of Fabric Air Permeability Tester: - Performance textiles (sportswear, PPE) - Technical fabrics (filters, tents, airbags) - Medical textiles (masks, gowns) - Nonwovens and industrial materials   Benefits of Fabric Air Permeability Tester:
      1. Accurate Breathability Measurement - Precisely measures how breathable a fabric is, essential for comfort and performance.
      2. Supports Quality Control - Ensures consistent air permeability in fabric batches, critical for products like PPE, sportswear, and filters.
       
      1. Enhances Product Design - Helps in selecting or engineering fabrics with the right airflow properties for specific uses.
      2. Standard Compliance - Conforms to international testing standards (e.g., ASTM D737, ISO 9237), ensuring global credibility.
      3. Quick and Reliable Testing - Provides rapid results, increasing lab efficiency and production decision-making speed.
       
      1. Wide Material Compatibility - Suitable for woven, nonwoven, knitted fabrics, and even paper or coated materials.
      2. Improves Functional Performance - Helps optimize products for ventilation, moisture control, and thermal comfort.
      3. Reduces Product Failure - Identifies underperforming fabrics early, minimizing risks in high-performance applications.
      Features of Fabric Air Permeability Tester:
      1. Digital Display - Shows air permeability readings clearly in units like L/m²/s or cm³/cm²/s.
      2. Precise Test Head/Clamp - Provides an airtight seal to prevent air leakage and ensure accurate results.
      3. Adjustable Pressure Settings - Allows testing under various pressure drops (e.g., 10–2500 Pa), depending on fabric type.
       
      1. Automatic Airflow Measurement - Built-in sensors or flow meters capture airflow rate automatically for quick analysis.
      2. Multiple Test Area Sizes - Interchangeable test plates to match different sample sizes and standard requirements.
      3. Data Logging and Export - Some models include USB or software connectivity for storing and exporting test results.
       
      1. Standard Compliance - Conforms to ASTM D737, ISO 9237, BS 5636, DIN 53887, etc.
      2. Robust Construction - Built with corrosion-resistant materials and durable components for long-term lab use.
      3. Low Maintenance - Simple cleaning and calibration process for reliable performance.
      4. Compact and User-Friendly Design - Ideal for lab benches and easy operation with minimal training.
      How to Use Fabric Air Permeability Tester:
      1. Prepare the Sample - Cut the fabric sample to the required size (usually circular, e.g., 20 cm²).
      2. Mount the Sample - Place the fabric securely in the test clamp or holder, ensuring no wrinkles or gaps.
      3. Set Test Parameters - Adjust the air pressure drop according to the fabric type or standard (e.g., 100 Pa).
       
      1. Start the Test - Turn on the air supply and start the airflow through the fabric.
      2. Read the Measurement - The digital display will show the air permeability value in the selected units.
      3. Record the Results - Note the readings or export data if the device supports it.
      4. Repeat if needed - Test multiple samples or areas for accuracy and average the results.
      5. Clean and Maintain - After testing, clean the clamp and ensure the device is calibrated regularly.
        Tip: Ensure the test environment maintains standard temperature and humidity for consistent results.   Fabric Air Permeability Tester Appliance Range It is used to TEST the air permeability of various textile fabrics, including industrial fabrics, nonwoven fabrics and other textile products and other breathable materials. Related Standards GB / T 5453, GB / T 13764, ISO 9237, ISO 5636, ASTM D737, etc. Instrument characteristics 1. Automatic sample clamping, automatic nozzle replacement, and quick test. 2. Microcomputer processing, the test results are displayed directly, without manual table calculation; 3. Built-in continuous test mode, the test unit can be switched as needed. 4. Chinese LCD menu operation, configure computer interface. Technical parameter 1. Range of sample pressure difference: 1 ~ 4000Pa 2. Measurable air permeability: 1 ~ 40,000mm / s 3. Measurement error: ≤ ± 2% 4. Measurable fabric thickness: ≤8mm 5. Test area: 5cm2; 20cm2; 50cm2; 100cm2 Ф50mm (≈19.6cm2) Ф70mm (≈38.5cm2) 6. Nozzles: 11 in total (automatic replacement of digital setting) CODE 00 01 02 03 04 05 06 07 08 09 10 DIAφ(mm) 0.8 1.2 2 3 4 6 8 10 12 16 20 7.Data Capacity:≤200 times tests 8.Power Supply:AC220V 50Hz 2KW 9.Weight:80Kg 10.Shape:1250×700×1250mm
      Add to cart
      Quick view
      Hydraulic GSM Cutter
      Hydraulic GSM Cutter

      Hydraulic GSM Cutter

      Lab Equipment & Instrument, Physical Testing & Fabric Testing
      $0.00

      Hydraulic GSM Cutter

      Hydraulic GSM Cutter

      Hydraulic GSM Cutter

        A Hydraulic GSM Cutter is a precision instrument used to cut circular fabric samples for GSM (Grams per Square Meter) testing. It uses hydraulic pressure to ensure clean, uniform cuts through multiple fabric layers, making it ideal for high-throughput or thicker materials.   Purpose of Hydraulic GSM Cutter: - To prepare accurate circular samples (usually 100 cm² area) for determining fabric weight in GSM. - Used widely in textile testing labs for quality control and consistency.   Working Principle of Hydraulic GSM Cutter: - Fabric is placed on a cutting pad. - The cutter, equipped with a sharp circular blade, is hydraulically pressed down on the fabric. - The cut sample is then weighed to calculate GSM using a formula or GSM scale.   Applications of Hydraulic GSM Cutter: - Suitable for woven, knitted, and nonwoven fabrics. - Used in textile mills, labs, and R&D centers.   Benefits of Hydraulic GSM Cutter:
      1. High Cutting Precision - Ensures consistent and accurate fabric sample size for reliable GSM results.
      2. Effortless Operation- Hydraulic action reduces manual effort and operator fatigue.
      3. Ideal for Thick or Multi-Layer Fabrics - Cuts through dense or multiple fabric layers cleanly.
       
      1. Time-Saving - Speeds up the sample preparation process, especially for high-volume testing.
      2. Improves Test Accuracy - Uniform samples help eliminate errors in GSM calculation.
      3. Durable and Long-Lasting - Robust construction ensures stability and extended service life.
       
      1. Safety Enhancement - Reduces risk of injury compared to manual rotary cutters.
      2. Consistent Pressure Application - Hydraulic mechanism maintains steady force for each cut.
        Features of Hydraulic GSM Cutter:
      1. Hydraulic Press Mechanism - Applies consistent and strong pressure for clean, even cuts.
      2. Standard Cutting Die (100 cm²) - Produces fabric samples suitable for GSM testing with standard area.
      3. Heavy-Duty Construction - Built with robust metal frame for long-term lab or industrial use.
       
      1. Sharp Stainless Steel Blades - Durable and replaceable blades ensure smooth, precise cuts.
      2. Cutting Pad Included - Comes with a rubber or nylon base to protect blades and ensure clean edges.
      3. Simple Lever or Button Operation - Easy to use with minimal training required.
      4. Non-slip Base - Provides stability during operation for safe, accurate cutting.
      5. Supports Various Fabric Types
      - Suitable for woven, knitted, nonwoven, technical textiles, and coated fabrics.   How to Use Hydraulic GSM Cutter:
      1. Place the Cutting Pad - Lay the rubber or nylon cutting pad on a flat surface.
      2. Position the Fabric - Place the fabric sample flat and smooth on the cutting pad.
      3. Align the Cutter - Position the GSM cutter die over the desired area of the fabric.
      4. Activate Hydraulic Press - Pull the lever or press the button to apply hydraulic pressure and cut the sample.
       
      1. Remove the Sample - Lift the cutter and carefully take out the circular fabric piece (usually 100 cm²).
      2. Weigh the Sample - Place the cut sample on a precision balance or GSM scale to determine weight.
      3. Calculate GSM - Multiply the sample weight (in grams) by 100 to get GSM.
        GSM Formula (Grams per Square Meter): GSM is used to measure the weight of fabric and indicates its thickness and quality. Formula: GSM = (Sample Weight in grams × 10000) / Sample Area in cm² For standard cutters that cut 100 cm² samples: GSM = Sample Weight (in grams) × 100   Example: - If a 100 cm² fabric sample weighs 1.5 grams: GSM = 1.5 × 100 = 150 GSM
      Hydraulic GSM Cutter

      Hydraulic GSM Cutter

      Add to cart
      Quick view
      Stretch Recovery Tester (Static Method)

      Stretch Recovery Tester Static Method

      Physical Testing & Fabric Testing, Dyeing Lab Machine
      $0.00

      Stretch Recovery Tester Static Method 

      Stretch Recovery Tester (Static Method)

      Stretch Recovery Tester

        A Stretch Recovery Tester Static Method is a lab instrument used to evaluate the stretch ability and recovery properties of fabrics, elastomers, or other stretchable materials. This method is crucial in textiles and material science to assess how well a material returns to its original shape after being stretched. Key Functions of Stretch Recovery Tester Static Method : - Measures elongation under a fixed force or length. - Assesses the recovery percentage after a specified recovery time once the force is removed. - Evaluates fabric's resilience, durability, and comfort properties. How It Works Stretch Recovery Tester  Static Method:
      1. A sample is stretched to a predetermined extension or force.
      2. The stretch is maintained for a set period.
      3. After removing the load, the recovery (return to original length) is measured after a fixed time.
      4. The fabric sample is clamped and stretched to a specific length or force.
      5. It’s held for a fixed duration (e.g., 1–5 minutes).
      6. The tension is released, and the sample is allowed to recover.
      7. The recovered length is measured after a set time.
      Main Components: - Fixed clamps to hold the sample. - Movable clamps for stretching. - Precision scale or ruler for measuring elongation and recovery. - Timing device (manual or digital) to control stretching and recovery periods. - To assess elastic recovery and dimensional stability after stretching. Applications: - Used in testing knitwear, sportswear, elastic fabrics, and compression garments. - Helps in product development and quality assurance. Stretch Recovery Tester Static Method is designed to determine the stretch recovery property of elastic material by static method. 2.0mm thickness stainless steel frame and base board, makes the tester firm and stable. Sample holder can be slid along the guide rail smoothly and can be fixed at any position of the rail. Test Scope:elastomeric material Testing Standards:ASTM D2594、ASTM D3107, etc. key features of a Stretch Recovery Tester Static Method: Adjustable clamps and measurement scale. - Timer for accurate stretch/recovery periods. - Simple mechanical design for ease of use. ✅ 1. Manual or Semi-Automatic Operation - Allows controlled stretching and recovery measurements. - Simple setup for routine quality control. ✅ 2. Adjustable Clamp System - Securely holds samples of various sizes and thicknesses. - Ensures consistent test conditions. ✅ 3. Precision Measurement Scale - Provides accurate readings of elongation and recovery length. - Often graduated in millimeters or inches. ✅ 4. Sturdy Frame - Made of corrosion-resistant metal or coated steel. - Ensures durability and stability during testing. ✅ 5. Time Control Support - Timer to monitor stretch and recovery durations. - Helps standardize test procedures. ✅ 6. Compact Design - Space-saving for lab environments. - Easy to move and operate. ✅ 7. Compliance with Standards - Often designed to meet standards like ASTM D3107 or BS 4294. Would you like a comparison with the dynamic method or specifications for a particular model? key benefits of using a Stretch Recovery Tester Static Method: ✅ 1. Accurate Fabric Performance Analysis- Provides reliable data on stretch and recovery, critical for assessing elasticity and fit. ✅ 2. Easy to Operate- Simple, manual setup makes it ideal for routine testing and quality control. ✅ 3. Cost-Effective- More affordable than dynamic testers, making it suitable for smaller labs or production units. ✅ 4. Standardized Testing- Supports industry-standard methods (e.g., ASTM D3107), ensuring consistency across tests. ✅ 5. Versatile Applications- Suitable for testing knit fabrics, elastic bands, spandex materials, and other stretchable textiles. ✅ 6. Durable and Low Maintenance- Mechanically straightforward with minimal upkeep required. ✅ 7. Enhances Product Development- Helps designers and manufacturers optimize materials for comfort, performance, and durability. Applications: - Textile R&D - Production quality control
      Stretch Recovery Tester (Static Method)

      Stretch Recovery Tester

      - Evaluating materials for comfort, durability, and fit Stretch Recovery Tester Diller In Bangladesh, Stretch Recovery Tester Importer In Bangladesh, Stretch Recovery Tester in Bangladesh, Stretch Recovery Tester in Bd, Stretch Recovery Tester In Uttara, Stretch Recovery Tester Price in Bangladesh, Stretch Recovery Tester Supplier in Bangladesh  
      Add to cart
      Quick view
      Pneumatic bursting tester

      Bursting strength tester

      Dyeing Lab Machine, Physical Testing & Fabric Testing
      $0.00
      Bursting strength tester

      Pneumatic bursting strength tester

      true burst

      Pneumatic bursting tester China national patent:ZL201210486480.8 ZL201220628425.3 Pneumatic bursting strength tester China national patent:ZL201210486480.8 ZL201220628425.3 [Scope of application]: It is used to measure the burst strength and burst expansion degree of various fabrics, including knitted fabrics, woven fabrics, non-woven fabrics, laminated fabrics and other fabrics made by other processes, under standard conditions or wet conditions. This method is employed to assess the burst strength and degree of burst expansion of various types of fabrics, such as knitted, woven, non-woven, laminated, and others produced through different processes, under both standard and wet conditions. This technique is utilized to evaluate the burst strength and extent of burst expansion in various fabric types, including knitted, woven, non-woven, laminated, and others produced through diverse manufacturing processes, under both standard and wet conditions. Benefits of Bursting strength tester: Fast testing cycle for fast feedback to the production • Auto-start, a photocell detects the presence of a sample and automatically initiates a measurement sequence, thus allowing hands-free operation • Auto-cycling function permits the continuous cycling of the upper pressure foot to facilitate representative and continuous measurements
      • Available with automatic test strip feeder Measurements are simple to make with the Mullen type Bursting Strength Tester. Fast automatic measurements Measurement starts automatically once a test piece has been placed in the measuring gap. The clamping foot descends, and a bursting strength measurement is made.
      The sample is then quickly released and is ready for the next measurement at a new position. To maximize the sample measurement rate, the tester uses a minimum of time between the bursts, so that a series of 10 measurements can be done in less than 45 seconds. The actual measuring time depends of course on the type of paper or paper board being tested. Three Different test results can be reported after a single measurement; bursting strength standard, bursting strength compensated, and bursting energy absorption (BEA).Bursting strength tester can be compensated for the stiffness of the diaphragm For low bursting strength levels, the stiffness of the diaphragm can account for a large portion of the bursting strength value. If desired, the device can also measure, calculate, and report effective bursting strength compensated from the effects of the diaphragm. Measurement of Bursting Energy Absorption (BEA) is used to determine the energy absorption capability of a material. Strong, flexible paper has higher energy absorption values, while brittle, stiff paper has lower values. Bursting Strength Tester calculates and reports BEA according to the SCAN P 24 standard Related standards of Bursting strength tester: GB/T7742.2 (the first drafting unit of national standards) ISO13938-2, etc. [Instrument characteristics]: 1. Microcomputer control, automatic burst test, automatic correction, automatic data processing, and output results in the form of experimental report. 2. Aerodynamics, high cleanliness. 3. Color touch screen interface, Chinese and English menu operation, support online communication.
      1. Bursting pressure can reach up to 1.2MPa 5. The maximum burst and expansion degree can reach 70mm. 6. Strengthen the lighting system on the test surface. 7. The main aerodynamic force helps to clamp the sample system. 8. A variety of test areas are available, and the switching is easy.
      2. A variety of unit conversions between Chinese and English. 10. Reliable anti-pinch safety protection design. [Technical parameter]: 1. Test range: (0~1)Mpa (the range above 1Mpa needs to be customized) 2. The minimum graduation value: 0.0001Mpa 3. Pressurization mode: direct pressurization, timing pressurization, and expansion degree pressurization.
      4. Test accuracy: ≤±0.2%F·S 5. Thickness of elastic diaphragm: ≤2mm 6. Testing area: cm²) 100 50 10 7.3 Dia.φ(mm) φ112.8 φ79.8 φ35.7 φ30.5 7. Air pressure rate: non-linear segmented pressurization (0.1~0.5) L/min 8. Safety cover: high-transparent plexiglass 9. Power supply: AC220V±10% 50Hz 800W 10. Dimensions: (470×490×780)mm (host L×W×H)
      Add to cart
      Quick view
      Spray Rating Tester
      Spray Rating Tester

      Spray Rating Tester

      Physical Testing & Fabric Testing
      $0.00

      Spray Rating Tester

      Spray Rating Tester

      Spray Rating Tester

        The Spray Rating Tester is a textile testing instrument used to evaluate the water resistance or water repellency of fabric surfaces. It measures how well a fabric can resist wetting when exposed to a controlled spray of water, helping assess its performance in rain or damp conditions.   Purpose of Spray Rating Tester - To assess surface wetting resistance of textiles. - Commonly used for outdoor clothing, rainwear, tents, and performance fabrics.   Working Principle of Spray Rating Tester - A fabric specimen is mounted at a 45° angle. - Water is sprayed from a standard nozzle for a specific time. - After spraying, the fabric is visually rated based on the appearance of water drops and wetting.   Key Components of Spray Rating Tester - Spray Nozzle: Delivers a consistent, standard water spray. - Funnel & Reservoir: Controls the flow and volume of water. - Specimen Holder: Positions the fabric at a 45° angle. - Spray Stand: Ensures accurate nozzle height and positioning.   Standards Used of Spray Rating Tester - AATCC 22 - ISO 4920 - BS EN 24920   Applications of Spray Rating Tester - Rainwear and water-resistant textiles. - Quality control in fabric finishing. - R&D for performance apparel.   Benefits of Spray Rating Tester:
      1. Quick and Simple Evaluation - Offers a fast way to assess fabric water repellency without complex setup.
      2. Standardized Testing- Complies with AATCC 22 and ISO 4920, ensuring globally accepted results.
      3. Cost-Effective- Low maintenance and no power requirement make it economical for routine lab use.
       
      1. Improves Fabric Performance - Helps manufacturers develop or improve water-resistant textiles.
      2. Non-Destructive Test - Does not damage the fabric, allowing for additional tests on the same sample.
      3. Visual Grading- Easy to interpret using a standard spray rating chart (0 to 100 scale).
      4. Supports Quality Control - Detects finish degradation or variation in water-repellent treatments.
      5. Portable and Compact- Lightweight design allows easy use in various lab or field settings.
        Features of Spray Rating Tester:
      1. Standardized Spray Nozzle - Delivers consistent water spray per AATCC and ISO specifications.
      2. 45° Specimen Mounting Angle - Ensures uniform test setup for accurate and repeatable results.
      3. Stainless Steel or Aluminum Frame - Corrosion-resistant and durable for long-term use with water exposure.
       
      1. Water Reservoir and Funnel System - Provides precise water volume (usually 250 ml) for each test.
      2. Graduated Spray Stand- Fixed height (150 mm above specimen) for controlled spray impact.
      3. Detachable Specimen Holder- Easy loading and removal of fabric samples.
      4. Compact and Lightweight Design - Portable and convenient for both lab and field testing.
      5. No Electricity Required - Fully manual operation increases reliability and reduces operating costs.
        How to Use Spray Rating Tester:
      1. Prepare the Sample - Cut fabric to standard size (usually 180 × 180 mm). - Condition the sample if required (21°C, 65% RH for 24 hours).
      2. Mount the Fabric - Place the fabric on the specimen holder at a 45° angle.
      3. Fill the Reservoir - Pour 250 ml of distilled water into the upper funnel.
       
      1. Start the Test - Release the water through the nozzle; it sprays over the fabric for about 25–30 seconds.
      2. Inspect the Fabric - After spraying, visually assess the water beading or penetration on the surface.
      3. Rate the Sample - Compare the fabric’s wetting pattern with the standard spray rating chart: - 100 = No sticking/wetting - 90–50 = Partial wetting - 0 = Complete wetting
      4. Record the Rating - Document the spray rating for quality control or reporting.
        Spray Rating Tester, Water Repellency Tester Spray Reting Tester [Scope of application]: Used for the determination of moisture resistance (wetting grade) of various fabrics which have been or have not been treated with water resistance or water repellency. [related standards]: GB/T4745 ISO4920 AATCC22 JISL1092 etc. [technical parameters]: 1. Glass funnel:150 x 150 (capacity 500ml) 2. Specimen placement angle:The level is 45 degrees. 3. Distance from nozzle to sample center:150mm 4. Specimen diameter:Ф150mm 5. Size of water receiving pan:500×400×30mm 6. Matching measuring cups:500ml 7, size 500 x 400 x 500mm 8. Instrument weight:5Kg
      Add to cart
      Quick view
      • Address
        • House 05, Road 3/A, Sector 09, Uttara, Dhaka.
      • Phone
        • 01713741546, 01974741546, 01714634452, 01838488804
      • Email
        • maamtexbd@gmail.com, info.maamtex@gmail.com, mamun@maamtexbd.com, info@maamtexbd.com
      • USEFUL LINKS
        • Privacy Policy
        • Terms & Conditions
      • USEFUL LINKS
        • Home
        • Contact Us
        • About Us

      SOCIAL MEDIA:

      Copyright Reserved by Maamtexbd 2024 | Developed by Systemeye.net.
      • Menu
      • Categories
      • Electronics
      • Lab Scientific Item
      • Home
      • Products
        • Dyeing Lab Machine
        • Physical Testing & Fabric Testing Machine
        • Lab Equipment & Instrument
        • Wet & Dry Process Instrument
        • Yarn Dyeing Machine-Equipment
        • Washing-Drying Machine
      • About us
      • Contact us
      Shopping cart
      Close
      Chat Now